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Abstract. The feasibility of using artificial neu-
ral networks as control systems for modern, complex

aerospace vehicles is investigated via an example air-

craftcontroldesign study. The problem considered

isthat of designinga controllerfor an integratedair-

frame/propulsion longitudinaldynamics model of a

modern fighteraircraftto provide independent con-

trolofpitchrateanclairspeedresponsestopilotcom-

mand inputs.An explicitmodel-followingcontroller

using H_ controldesign techniquesisfirstdesigned

to gain insightinto the control problem as well as

to provide a baselineforevaluationofthe neurocon-

troller.Using the model of the desireddynamics as a

command generator,a multilayerfeedforward neural
network is_rainedto controlthe vehiclemodel within

the physical limitationsof the actuator dynamics.

This isachieved by minimizing an objectivefunction

which isa weighted sum of trackingerrorsand con-

trolinput commands and rates.To gain insightinthe

neurocontrol,linearisedrepresentationsofthe neuro-

controllerare analyzed along a commanded trajec-

tory. Linear robustness analysistools are then ap-

pliedto the linearisedneurocontrollermodels and to

the baseline B_ based contrdller.Future areas of

researchare identifiedtoenhance the practicalappli-

cabilityofneural networks to _qightcontroldesign.

I Introduction. In the past few years,there

has been an increasinginterestin the controlcom-

munity to exploitthe promise ofaxtificialneural net-

works to solvedifficultcontrolproblems. However,

most ofthe neuralnetwork applicationsto controlde-

sign that have appeared inthe literature[1,2],either

dealtwith roboticsystems, or with controlproblems

that are mainly of academic interestsuch as the in-

verted pendulum problem. Only more recentlyhave

neural networks been applied to the controldesign

ofmore complex problems, e.g. manufacturing pro-

cess[3].The objectiveof thispaper isto investigate

the applicabilityofneural networks as controllersfor

aerospace vehicles with special emphasis on piloted

flight. Towards this objective, results are presented

from a preliminarystudy of neurocontroldesign for

an integratedaifframe/propubion model of a mod-

ern fighteraircraftfor the pilotedlongitudinalland-

ing task. To gain insightin the characteristicsof

the neurocontroller,linearanalysistoolsare applied

to linearisedrepresentationsof the neurocontroller

and to a baselineHoe based controller.Closed loop

system performance and robustnessofthe neurocon-

trollerare evaluated and discussedin relationto the

Hoe based controller.

The paper is organized as follows. The vehicle

model and the desiredclosed-loopdynamics are first

discussed,and an explicitmodel-f31lowingH_ based

controldesign ispresented.The architectureused to

train the neurocontrolleristhen presented and the

resultsof the neurocontrol]erare evaluated. A per-

formance and robustness analysisisthen presented

for the neurocontrollerand the H.c based controller.

2 Vehicle Model. The vehiclemodel con-

sistsof an integratedairframe and propulsionsystem

state-spacerepresentationfor a modern fighterair-

craft powered by a two-spool turbofan engine and

equipped with a two-dimensional thrust-vectoring

and reversingnozzle.

The flightconditionused in thisapplicationisrep-

resentativeof the STOL (Short Take-offand Land-

ing) approach-to-landing task, with an airspeed of

V0 = 120 Knots, a flightpath angle of 70 = -3 deg,

and a pitch attitudeof 8o = 7 deg. The linearised

dynamics ofthe vehiclemodel are of the form

t = As + a_., _ = cs; (I)

where the statevectoris

= [u, w, Q, 8, h, N2, N25, P6, T41B] T , (2)

with

u = aircraft body axis forward velocity (ft/sec)

w = aircraft body axis ver_ica_ velocity (ft/sec)



Q = aircraftpitch rate (rads/sec)

8 = pitch angle (rads)

h = altitude(it)

N_ = engine fan speed (rpm)

N_5 = core compressor speed (rpm)

P6 = engine mixing plane pressure (psia)

T,UB = engine high pressureturbineblade

temperature (OR),

and the controlinput vectoris

_., = [WF, 6TV]r; (3)

with

WF = engine main burner fuel flow rate (lbm/hr)

6TV = nozsie thrust vectoring angle (deg).

The vehicle outputs to be controlled are

= IV, Q]r , (4)

where V is the aircraft velocity in ft/sec, and Q is

the pitch rate in deg/s. The system matrices A, B,
and C are available in Ref.[4]. The open-loop vehicle

eigenvaiues are:

)q = 0.07, A_,3 = -0.09 ± j0.23, _'t = 1.06,

and

As = -1.47 Airfraxne modes

A6 = -1.40, A7 - -3.57 ,As - -6.96,

A9 = -89.28 Propulsion modes.

Note that the airframe isstaticallyunstable with a

highlyunstabie pitch mode. Open loop analysisalso

indicated a strong coupling in the response of the

controlledoutputs f to controlinputs fla.

The controldesign objectiveisto design a control

system that providesdecoupled command trackingof

velocityand pitchratefrom pilotcontrolinputswith

aircraftresponses compatible with Level I handling

qualitiesrequirements [5].The desiredresponse dy-

namics are selectedto be ofthe form

$,.= + B.  SEZ, = (5)

with gsEL = [VSZL, QsEL] z where VsE_ is the pilot

velocity command in ft/s and QsEL is the pilot longi-

tudinai stick deflection in inches, and _c = [Vc, Qc] T,

where the subscript "c" refers to the ideal response

in V and Q with units of ft/s and deg/s respectively.

The system matrices A,_, B,_ and C,, are the state-

space representation of the ideal response transfer
functionslistedin Table i.

Table 1: Desired Response Transfer

Funetlons.
Notation: .{k(1/r)/[_,; w,] =

k(s + 1/¢)/(s 2 + +

--R_ = 0--R_ = __/sr.L ' OSEL

Actuator models were also used in control design

and evaluation. The fuel flow actuator was modeUed

as
I0 50

GwF(s) -- _ + 10"8+ 50' (6)

with a maximum fuel flow rate IW.FI_ =

lO, O001bm/hr, and a rate limit IWF],,_ =

20, O001bra/hr/s. Note that the fuel flow here cor-

responds to the perturbation from the trim value for
the linear model. In this study, the value [WF_,._
is therefore chosen such that the total fuel flow limit

will not be exceeded when a perturbation of a magni-

tude of WF,_, is commanded. The thrust vectoring
actuator is modelled as

15
Gsrv(,)= --" (7)

$+ 15'

with a maximum thrust vector angle [6TV]m = =

10deg, and a rate limit16TVI,,,,== 20deg/s.

As a result,nonlir_earigieaappear inthe controlde-

sign and evaluationin the form ofactuatorsposition
and rate limits.

3 Hoo Control Design. Recent advances in

H_ controltheory [6]and computational algorithms

to solve for H_ optimal controllaws [7i have en-

abled the applicationofthistheory to practicalcom-

plex muhivariable controldesign problems. Many ex-

ample applicationsof Hoo based controldesigns for

aerospace vehicles have appeared in recent literature

[8-I0].Prior to applying a neural network approach

to controldesignforthe example vehicleunder study,

an H= baaed controllaw was obtained as a baseline

for the performance and robustness analysisof the

neurocontroller.

Within the framework of H_ optimization, the

control design problem for this example study was

formulated as the model-followingproblem shown in

Fig.l. The three transferfunctions that are of in-

terestfor such a problem are the sensitivityfunc-

tion S(s), the complementary sensitixdtyfunction

T(s), and the control transmission function C(s).

These representthe transferfunctionsfrom the refer-

ence commands to tracking errors,controlledvari-

ables,and commanded controlinputs respectively,

i.e. _(,) = S(,)_(_), _(_) = T(s)_c(s) and _c(s) =



C(s)G(s). In order to be able to influenceboth the

low-frequency and high-frequency propertiesof the

closed-loopsystem, itisdesirableto finda controller

K(s) which minimizes a weighted norm of a combi-

nation ofthese threetransferfunctions,i.e.:

[ ]Wc(j,,, )
(8)

The weighting functions Ws(ju_), WT(juJ) and

Wc (ju_)are the "knobs" used by the controldesigner

to "tune" the controllerK(s) such that the design

objectivesare met. For instance,choosing Ws to

be large at low frequenciesensures good command

trackingperformance, and choosing Wr to be largeat

high frequenciesensuresrobustnesstohigh frequency

unmodelled dynamics. Wc ischosen to ensure that

controlactuationbandwidths, as wellas rateand de-

flectionlimits,are not exceeded inthe controldesign.

For the aircraftexample, the integrated design

model, P(s), in Fig.1 consistedof the vehiclemodel

(i)and the actuatormodels (6)and (7).The idealre-

sponse model, R(s), in Fig.1consistedofthe desired
_..A__

model dynamics (5) with a high pass filter(,+0.i)on
the pilotpitch rate command. This high pass filter

isadded to reflectthe factthat pitchrate cannot be

commanded in steady-state.The outputs _ and the

errors_ were scaledby theirapproximate maximum

values to be commanded by the pilotwith V° = 20

ft/secand Qo = 3 deg/sec. The sensitivityweights

Ws and the complementary sensitivityweights I_

were chosen as listedin Table 2.

Table 2: Weights for /-/:_Control Design.
Controlled Ws WT

Variable

V 3:_.50s._- i000
_t35.01,-_i 0.0022,,.t- 1

Q ¢.z0,-_ _000 0.044,
67.02, _- 1 0.00044* -r ],

This choice of H's and WT was based on the per-

formance and robustness arguments discussed earlier.

The weights Wc consistedof the controlcommands

and ratesweighted by the inverseofactuator position

and rate limitsforWF and 5TV listedearlier.Note

that the combination oftrackingerrors_ and aircraft

outputs _ isused as a controllerinput insteadof

and idealresponse, _, to avoid control saturation

due to largepilotinputs and undue amplificationof

inadvertentpilotcommand noise.

The Hoc controldesign plant as discussed above

is of 21st order consistingof the 9th order aircraft

model. 2nd order H'F actuator model, istorder _TV

actuator model, 5th order idealresponse model, and

ist order Ws and WT for the two controlledvari-

ables.The resulting21storder H_ optimalcontroller

obtained using the solutionalgorithm of Ref.[6]was

reduced to 13th order by residualisingthe high or-

der modes. The maximum eigenvalueof the reduced

order controller is [Aim= "- 6.83rads/sec, which im-

plies that the controllercan be implemented digitally

with reasonable sampling rates. With thisreduced-

order controller,the performance resultsin terms of

closed-loopresponse,control effortand controlrate

requirements,are shown inFigs.2and 3 fortwo cases

of pilotcommand inputs: (i) V$_L = -20ft/s for

t > 0,Qs_zL = 0.5infor0 < _ < 3secand QsEz = 0in

for t > 3see;(2) VSEL = 20ft/sfort > 0 and QSEL

same as forcommand input case 1. From Fig.2,we

note that forthe pilotcommand input in case I the

velocityresponse obtained with the controllerisquite

closetothe idealresponse,and the controlinput com-

mands and ratesare reasonable. For the pilotcom-

mand input incase 2,the pitch rateresponse isquite

similarto that for case I; however, the velocityre-

sponse is degraded from the ideal response. Case 2

is demanding in that the pilot is commanding the

aircraft to pitch up as well as accelerate to a higher

velocity.As seen in Fig.3,the maximum fuel flow

rateiscommanded by the controllerforan extended

period of time in order to track the idealresponse.

Note that the closed-loopsystem remains stable in

the presence ofthe actuator limits,and the aircraft

response tracksthe idealresponse inthe steady-state.

4 Neurocontrol Design. Although the

strength of neural networks liesin theirabilityto

handle nonlinearitiesin the controlleddynamics, the

controldesignfora linearaircraftmodel isbeing con-

sidered in this paper to gain insightinto the neu-

ral network characteristicsby using linearanalysis

tools.As discussedearlier,nonlinearitiesof concern

forpracticalcontroldesign,such as actuator position

and rate limits,are included in the design criteria.

The architecturefortrainingthe neurocontrolleris

shown in detailin Fig.4.For each pilotselectedtra-

jectory_SEL(t), a commanded trajectory_c(t) isgen-

erated from (5). Prior to training,the commanded

variablesit(t)are discretizedand scaledto_(tt) us-

ing the same scalingas for the H_ design. Like-

wise,the dynamics of the actuators and of the vehi-

clemodel are discretizedand scaled afternormaliz-

ing the controlinput vector by itsmaximum value

(!WFI,r,a, , [_2_r[,_az). As for the Hoc design, the

trsckir_gerror at time t_ is the error between the

scaled vehicleoutput vector and itsdesired scaled

valueat the same time t#,,i.e._,(tt)= ,_(_k)--_*(tk).

However, because ofthe time-discretizationofthe ac-



tuatordynamics and vehiclemodel dynamics within

the trainingloop,a commanded controlinput vector

generated at time _k by the neurocontrollerwillonly

affectthe aircraftoutput at time t,+_. Consequently,

the trackingerrorat time tk+2 definesthe magnitudes

ofthe weights increments at time _k- Said inanother

way, due to the time-discretizationof the dynamics,

the internalrepresentationof the neurocontrollerhas

to be updated at time tt on the basisof information

which willbe only availableat a latertime _k+_. To

be consistentwith the time-discretizeddesign,knowl-

edge ofthe anticipatedcommanded vehicleouput at

time th+2,_(_t+2), isexplicitlyprovided to the neu-

ral network at time _k dumng _eaining by means of

the commanded error_,(tk) _(t_+2)-£°(_k). This
procedure ensuresthatthe proper actionwillbe com-

manded by the neurocontrollerat time _k to achieve

the desired tracking at time tk+_ during training.

When operatingthe trainedneuralnetwork in closed-

loop however, the trackingerror _z(tk)willbe used

as input to the neurocontr011erinstead of the com-

manded error_,(tk)which isnot availablein the real

simulationbecause itrequiresknowledge off'_tu_pi-

lot command inputs. This means that the trained

neuralnetwork willbe trackingthe exact commanded

trajectorywith a two-step time delay during simula-

tionevaluation.Sincethe neurocontrolleroperates in

the continuous time domain, thistwo-step time de-

lay should not adverselyaffectperformance inclosed-

loop evaluation.That such isthe casewas confirmed

by the closed-loopevaluationresultsto be presented
later.

As shown inFig.4,the two commanded controlin-

puts are calculatedby a two hidden-layerfeedforward

neuralnetwork with eightinput units(orfour pairsof

fan-outunits associatedto the Q and V variables),

and two neurons in the output layer. These pairs

consistof the scaledoutput vector £J(_t);the com-

manded error_z(_) between the scaledvehicleout-

put vector at time _k and itsdesiredscaledvalue at

time tk+2; the discretetime-derivativeof the track-

ing error,_,(tk);and the time-averageof the track-

ing error,i/tkf_o_(t)dt. As inthe Hoc design,the

motivation behind using the combination of _(tt)

and _,(it)as inputstothe neurocontroller,insteadof

£"(_k)and _ (_t+_),isto allowthe neural network to

reconstructthe command without directfeedforward

ofthe command. The roleof the errorrates_,(it)is

toprovide the neuralnetwork with lead information,

and the time-averagederrorfeedback i/tkf_o'[,(t)d_

isto minimize the steady-statetrackingerrorforstep

command inputs.(The motivation behind scalingthe

f_[,(t)dt intoitstime-averagewas tointegralerror #0

improve backpropagation learningby bounding the

corresponding input to the neural network. Other

alternativeswould be to low-pass filterthe integral

erroritself,or to remove the scalingfactorI/tt from

the time-averaged erroras learningtakes place. Be-

cause oftheirpotentialto improve steady-statetrack-

ing, these latterapproaches should be considered in

futureneurocontroldesigns.)In Fig.4,the symbol A

representsa latchthat isclockedevery 6¢seconds to

update the inputsto the neurocontroller,the actua-

torsand the vehiclemodel. A network configuration

of15 neurons inthe firsthidden layer,and 10 neurons

in the second hidden layer,ischosen for the neuro-

controller.Each neuron of the neurocontrollerhas

the activationfunction:

= _anh(-); (9)

which limitsitsoutput y to the interval[-i,+i] for

any input signal z. For a given set of weights of

the neuralnetwork, the two output neurons yieldthe

normalized commanded controlinput vector

. WFc 6TVc

e'_(z,)= [IWFI_.,' liT-'_._ ] (I0)

which is applied to the scaled actuators. After a small

time-interval 6_ = gt+l - tt, the actuators yield the

normalized actuator control output vector _(_t_.l)

as ¢efined by (6) and (7). The normalized actuator
control output vector _2[(tt+l) is subsequently ap-

plied as input to the scaled vehicle model over the

time-interval [tt.._, £t+_], and changes the state vec-
tor of the vehicle model from £(tt+l) to $(tt+_). In

order to maximize the tracking performance while

minimizing the costs associated with high control ef-

fort and high control rate requirements, the neural
network is trained to minimize an objective function

that includes tracking errors, control effort and con-

trol rate requirements

1 T ,*
J(_*) 5( _, (Z*+_)-,-e,(_) +

) + )
(n)

where [,(_t+_) is the error between the scaled com-

manded vector _ (_t+_) and the scaled vehicle output

_'(_t+_). The matrices _, _ and _ are 2x2 diago-

nal matrices whose coefficientscan be adapted so as

to modify the characteristicsof the neurocontroller

in order to achieve a practicalperformance/control-

efforttrade-off.Expression (11) isof the same form

as the objectivefunction used in Ref.[11]to design

a neurocontrollerfor the same airframe/propulsion

system, but without s.imulatingthe actuatordynam-

icswithin the trainingloop. In Ref.[11_,itwas found

4



that training the neural network to minimize only the

tracking error led to high control effort and high con-

trol rate requirements. When the actuator dynamics

were included in the closed-loop evaluation, this re-

sulted in a highly oscillatory pitch rate response and

a limit cycle behavior in velocity/fuel-flow response.

However, a satisfactory trade-off between tracking

performance and control effort could be achieved with
finite values of A and _. Since the bandwidth limiting

effect of the actuators is now explicitly taken into ac-

count within the training loop, much improvement in

performance/control-effort trade-off is expected from

the minimization of (11).

The backpropagation algorithm [12] was used to

find the set of weights of the neurocontroller which

minimize the objective function (11) over the set of

pilot input commands. In order to backpropagate

(11), a single layer feedforward neural network (per-

ceptron) was used in place of the vehicle model in the

training architecture of Fig.4. This neural network

emulator had 11 input units (corresponding to the

two normalized actuator control outputs and to the

nine state variables of the vehicle model), and g lin-

en, output neurons (corresponding to the nine state

variables of the vehicle model). Likewise, two feedfor-
ward neural networks were used to emulate the dis-

cretized dynamics of the actuators. The second-order

dynamics of the fuel flow actuator were simulated by

a three-layer network of linear and linear-thresholding

neurons. As shown in Fig.5, constraining fuel flow ef-
fort and fuel flow rate requirements is achieved by

thresholding the linear neurons of the two last lay-
ers. The first-order dynamics of the thrust vectoring

actuator were simulated by the two-layer neural net-

work shown in Fig.6. Constraining the effort and

rate requirements of the thrust vectoring actuator is

achieved by means of linear-thresholding neurons.

The layers of an (N _- 1)-layer neural network can

be labeled by an index p from 0 to N, p = 0 de-

noting the input layer. Layer p has u(p) elements

consisting of [u(p) - 1] neurons and one unit that is

permanently _on" and used to define the thresholds
of the neurons of the (p + 1) th layer. With symmet-

ric activation functions of the type (9), the threshold

of a neuron is defined as the value of its input signal
above which its output is positive, and below which

its output is negative. During training, the thresh-
olds are updated with backpropagation in a manner

similar to the updating of the weights [12].

The weight connecting the ith neuron of the pth

layer to the jr^ neuron of the (p+ 1) th layer is

denoted as wj,(_+x):i,p. The threshold of the jth

neuron of the (p+ 1) _u layer thus corresponds to

w_,(p.1):_(p),_. For a single feedforward pass of the

neural network, a weight increment is given by

6wj,(p+X):_,_ = ao_,pA_,(p+x) (12)

where a is the steepest descent coefficient, oi,p is
the output of the i th neuron of the pth layer, and

A_,(p+x ) is the effective error at the output of the

j_^ neuron of the (p + 1)th layer. The effective errors

Ak,(p+_ ) in the (p + 2) t_ layer are backpropagated to

the (p + 1) th hidden layer to give the effective errors

in the (p+ 1) th layer, as

L_,(p+x)= .fl(z_,(v+x)) x Sj,(p+x)

with

and where p(z_,{p+x)) is the value of the derivative of

the neural activation function for an input za,(p.x ) of

the jta neuron of the (p ÷ 1) ta layer. In the output

layer, the effective errors A_._r are the gradients of

the objective function (11)

' Oo.L_
(14)

Whenever the neural activation is not differentiable

over the range of_]l possible neuron input values (as

is the case for the linear-thresholding neurons used for

emulating the actuators),/_ should be constructed to

preserve the characteristics of a monotonous contin-
uous function. For example, the linear-thresholding
activation function which is defined as

f,,,(')= • _fI_I<-I,

.f,,,(_)= i _f• >__I,

f,,,,(_)= -1 _f• <_-1. (IS)

is clearlynot differentiableover I-oo,+oo]. Since

fu_ is piecewise differentiable, it would seem a-priori

natural to define rum _ ruM(z) - 1 if fz I < 1, and

ruM(z) = 0 if Izl > I. With this definition of rum

however, any time a neuron input zo would take a

value outside of [-1, +1] during training, the neuron

output would remain trapped to 1, if z0 > 1, or -1, if
z0 <: -1. For such neuron input values, the weights

ofthe incoming connectionswould remain frozen, and

thiswould bLas the learning.In order to permit the

neurons fullaccessto the output statespace during

training,]_h_ isthus definedas

fUM(z,,p) = i if lz,,_l_<I or if z,.p.S,,p< O,

/,,_,(_,._)= 0 o_h_._e. (16)



which willensure that the weights be properly in-

cremented during training. S_,p which appears in

(16)isdefinedin (13).The serialarrangement ofthe
neurocontroller,the neuro-emulator ofthe actuators,

and the neuro-emulator ofthe vehiclemodel, consti-

tutesa largerneural network through which the ob-

jectivefunction (11),J(tk), can be backpropagated

through time [2]using Eqs.(13)-(16). The connec-

tionsbetween neurocontrollersand neuro-emulators

which were used as backpropagating channels are in-

dicatedin Fig.7 over a period ofthree time-steps6_,

and the weightsincrements are calculatedusing (12).

The commanded trajectoriesused to train the

neural network were generated as follows. The pi-

lot selectedpitch rate was a doublet centered at a

time tc between 2.5s and 5s, with the characteris-

tics: QSF.L(t) = Qo for $ < to; QSzL(t) = -Qo

for 2to >_ t > to; QSEL(_) = 0 for $ > 2_c- Note

that QszL corresponds to pilot longitudinal stick de-
flection with units in inches. The pilot selected air-

frame velocity was a step function characterized by

VszL(t) = 0 for Z < 0 and VSEL(t) = Vo for t > 0.
The maximum intensities IQol and IVol of the ran-

domly selected input commands were bounded by

Q,_= = 0.5 in and V,_,, = 20 ft/s. This maxi-

mum value of QSEL corresponds to a maximum pitch
rate command of about 3 deg/sec. Random sets

of input trajectories were generated from uniform
distributions of Qo, tc and V0 over [-Q,,_,, Q,,4z],

[2.5s, 5s] and i-V,,a=, V,_a,] respectively. The com-

manded variables Q,(t) and V_($) were filtered from

QsEL(t) and V'.gL(¢) over a period of 12s with a
time-step /_t = 0.02s. These types of commanded

trajectories represent typical pilot command inputs.

Training was performed in two phases. In the

gross-tuning phase of the training_ a set of 4000 com-
manded trajectories was randomly generated, and the

synaptic weights were updated at every time tk = k/St

after backpropagating J(tk)through the neural net-
work. This was done once for each trajectory of the

training data set with a steepest-descent coefficient
a = 0.001. In the fine-tuning phase of the train-

ing, the synaptic weights were updated following a

moving-window scheme: at every time tk, the weights
were incremented after backpropagating through the

neural network the time-integral of the objective

function calculated over n_ sampled points or dur-

ing a period of r_.6t seconds, i.e. _x J(tk+i). As
the width of the moving window was progressively in-

creased to cover an entire commanded trajectory, i.e.

r_ = 12sec/O.O2sec = 600, the steepest descent co-

efficient a was progressively reduced from the initial
valueof0.001to 0.0001.In total,the neurocontroller

was trained with approximately 10,000 commanded

trajectories.
5 Neurocontrol Performance. The eval-

uation architecture of the neurocontroller in closed-

loop is shown in Figure 8. The neurocontroller was

tested on step pitch rate input commands, different

from the doublets used in training. The input com-
mands chosen to illustrate the neurocontrol perfor-

mance were defined by the step pitch rate command

QsgL(t) = 0.5in for t _< 3see, Qs_L(t) = 0 for
> 3see; applied simultaneously with one of the fol-

lowing classes of step velocity commands: VsE_(t >

0) = -20ft/sec (case 1); VSZL(¢ > 0) = 20ft/sec

(case 2).
When training the neural network without giving

any consideration to the cost associated with large
control efforts and large control rates, i.e. _ = _ - {}

in Eq.(11), the neurocontroller learns very satisfac-
torily to track the commanded outputs. However,

the fuel fiow is quite irregular, and both control in-

put commands generated by the neurocontroller ride

the actuator rate limits. A study of the trade-off

between tracking performance and control effort re-

quirement was conducted by training the neural net-
work with _ and _ of the form A = diag[AwF, A6TV]

and _ = diag[/_wy,/_6rv], with the same training
characteristics and the same matrix elements of

used earlier. As in Ref.[11], the tracking error is found
to actually decrease for small increases in values of _,

and _.

The results from this trade-off study are shown in

Figs.9-10 for cases 1 and 2 with the choice of param-

eters _ = diag[pv,pQ] = d/ag[2000,20], A = 0.0I,
-- 0.1. The pitch rate response follows the com-

manded trajectory very smoothly, in spite of the

thrust vectoring requirement ETV reaching the ac-
tuator rate limit at the initiation and end of the

command. However, within the proposed training

scheme, any attempt to lower the rate of thrust vec-

toring by increasing/_6rv resulted in a loss of track-

ing performance. In case 1, neurocontrol is very sat-
isfactory both in pitch rate and velocity response. In

case 2, neurocontrol tracking is still very satisfactory

in pitch rate response, but is slightly less satisfactory

in velocity response owing to the physically demand-

ing effort of increasing simultaneously aircraft speed

and pitch angle.

In order to estimate the effect of providing the

neurocontroller with lead information during train-

ing, the above process was repeated without feed-

ing the discrete time-derivatives of the tracking er-

ror, i.e. $,(tk), to the neural network during train-

ing. Without constraining control efforts and rates
(A = _ = 0), the tracking performance deteriorated

significantly with the appearance of some ringing in



thepitch rate response and a limit cycle behavior in

the velocity/fuel-flow response. The fuel flow require-
ment and fuel flow rate were both much more oscilla-

tory than when lead information was provided to the

neurocontroller during training. The fuel flow rate
oscillated between the maximum and minimum rate

limit during and beyond the 12 sec training period. A

more oscillatory, behavior was also noted for the con-

trol effort and rate of the thrust vectoring. However,

the situation improved significantly when constraints

on control efforts and rates were applied during train-

ing. In this case, a satisfactory trade-off between

performance and control-effort was reached for val-
ues of A and _ in the vicinity of AwF -- AsTv = 0102,

/_wF "- 0.2 and tzs_v = 1.0. The results showed
a similar velocity/fuel-flow response with and with-

out lead information, but showed a noticeable degra-

dation in the pitch-rate/thrust-vectoring response in

comparison to the situation where lead information

was provided to the neurocontroller. This degrada-
tion in tracking performance resulted from the large

value of the pitch rate constraint _sTv (one order

of magnitude larger than before), which was needed
to decrease the tracking overshoots. In summary,
lead information enabled the neurocontroller to over-

come ringing and limit cycle behavior while increas-

ing tracking performance. Thus, within the present
scheme of neural computation, any dynamic char-

acteristics required to achieve desirable performance

had to be incorporated into the neural network with

an appropriate choice of inputs. An extension of the

present neura_ architecture to generate such dynamic

characteristics could be a feedfoeward neural network

with intermediat; feedback inputs, i.e. a recurrent
neural archhecture as a dynamic neurocontroller.

6 Analysis of the Controllers. From
a comparison of the closed:loop response for the

two command cases with the H_: based reduced or-

der controller (Figs.2 and 3) and the neurocontroller

(Figs.9 and 10] it is evident that the neurocontroller
provides improved command tracking although at the

expense of increased control rate activity, both for
6TV and WF. Also the pitch vectoring control re-

quirements are higher and the fuel flow activity ex-
hibits oscillatoR'behavior for the neurocontroller.

Note that the resultspresented so fax have been
with the nominal vehiclemodel used for controlde-

sign. Since thismodel isonly a simplifiedversion

of the vehicledynamics, an important criterionfor

design of conzrollersfor flightvehiclesisthat of ro-

bustness. Robustness isdefinedhere as maintaining

performance and stabilityin the presence of uncer-

taintiesassociatedwith the modelling process.Mod-

ellinguncertaintiesare due to neglected high order

dynamics, parameter changes due to change in flight

conditionsand the margin oferrorassociatedwith es-

tirnatingmodel parameters based on analyticaltools

and experimental data. A classicspecificationfor ro-

bustness,alsoused in the militaryspecificationsfor

designofflightcontrolsystems [5],isthat ofstability

margins, specificallygain and phase margin [14].The

toolsto determine thesemargins are fairlywelldevel-

oped for linearsystems - classicalBode analysisfor

single-inputsingle-outputsystems [14]and modern

singularvalue and structuredsingular valueanalysis

for multi-input multi-output systems [15, 16]. For

nonlinearsystems, one way to determine robustness

istoconduct Monte Carlo type simulationsusing all

possiblecombinations ofmodelling uncertaintiesthat

can be expected. Another approach isto linearisethe

closed-loopsystem atvariouspointsalong a giventra-

jectoryand then apply the linearanalysistools.The

latterapproach islesstime consuming and provides

more insightinto the characteristicsofthe nonlinear

system. Furthermore, thislatterapproach allowsto

perform a similaranalysisfor the linearHoo based

reduced ordercontrollerand the nonlinearneurocon-

troller,forsmall perturbationsalong a given trajec-

tory.

Since the vehicle model used in this analysis is

linear, only linear small perturbation models of the

neurocontroller at different points along a given tra-

jectory are needed to perform the type of robust-

ness analysis discussed earlier. Considering the closed

loop system response with the neurocontroller for the

case 2 command inputs, corresponding to the results

presented in Fig.10, the linear neurocontroller models

were generated at times t = 0.5, 2, 4, 6, 8 and 10 sees.
The first three points in time correspond to tran-

sient control activity whereas the last three represent

steady-statetype command tracking with monoton-

icallydecreasingtracking error. Note that the neu-

rocontrolleras shown in Fig.8 consistsof 4 sets of

scaled(normalised)inputs:the time-averaged errors

1/tfto_(t)dt, the error rates _ (t), the errors _ (t) and
the controlledoutputs _'(t).The scaling,the time-

averaged error and derivative action were embedded

within the neurocontroller during the linearisation

process to find a control structure consistentwith

the structureof the Hoe based controllerwhich has

only the errors(@) and the controlledoutputs (_,)as

the inputs. The frequency response Bode plots of

the lineaxizedneurocontrollermodels were obtained

to gain insightinto the characteristicsofthe control

action.Bode gain plotsforthe thrustvectoringangle

(6TV) response toallthe inputs to the controllerlin-

earizedatt --0.bsecare shown in Fig.11.The Bode

gain plotsforthe B'_ based controllerare shown in



Fig.12. An example variationin the neurocontroller

characteristicswith the change in magnitude of the

inputsto the controlleralong the trajectoryisshown

inFig.13interms ofthe Bode gain plotsforpitchrate

error(eo) to thrustvectoringangle (6TV) response.

Fig.13shows that the neurocontrollergainsdecrease

with time. This type ofbehavior was exhibitedby all

the other input/output Bode plotsof the linearised

neurocontrollermodels. So in effect,the neurocon-

trollercan be thought ofas a set oflinearcontrollers

with the controllerparameters being a strong func-

tion of the magnitude and direction(relativemagni-

tude) ofthe inputs to the controller.Note that since

the H_ based controllerislinear,itsdynamics are

independent of the magnitudes of the controllerin-

puts.

From Fig.ll we note that the neurocontrollerex-

hibitsPID (Proportional + Integral + Derivative)

controltype behavior from the errorinputs (ev and

eQ) to the thrustvectoringangle (_TV) output. This

was also the case for the ev and eQ to WF response,
and was true all along the trajectory as shown par-

tially (for eQ input) by the plots in Fig.13. This dy-
namic behavior of the neurocontroller for the error

inputs is directly due to allowing feedback of the in-

tegral and derivative errors. Since no such dynamics
were added to feedback of V and Q to the neurocon-

troller, the neurocontroller exhibits only proportional

type behavior from these inputs.

Comparing Figs.ll and 12, we first note that the

magnitude of the ev and eQ to 6TV response is much
lower fJr the Hoc based controller compared to the

particular linearized neurocontrolter models. This

was also true for the error in!_uts to WF response.
This result is a further confirmation that the con-

trol effort and control rate requirements to track a

given set of commands will be higher for the neuro-
controller. Although the dynamic behavior of the Hoc

based controller is more complex than the neurocon-

troller, some integral and derivative action is evident

in the eq to _TV response. The integral action was
built into the Hoc based controller through the choice

of the sensitivity weighting, however, unlike for the

neurocontrol design the error rate information was

not explicitly provided in the Ho_ controller. The Ho_

control synthesis procedure is such that it naturally

builds in the amount of lead (error rate) information
into the controller that is necessary to meet the con-

trol design objectives specified through the weighted

quantities.As evident from Figs:]]_ i2, the Ho¢

based controllerprovides leadat a lowerfrequency in

the eQ to 6TV response ascompared to the linearized

neurocontroller.

Another differencebetween the H_ based con-

trollerand the neurocontrolleris the compensation

from the measurements of the controlledplant out-

puts (V and Q) to the controlinputs (WF and 6TV).

As mentioned earlier,this compensation isa %on-

stant" (varying with input magnitude) gain from

the controllerinputs to outputs for the linearised

neurocontroller.However, as seen from Fig.12,the

B'oo based controllerhas dynamics associatedwith

this part of the controlcompensation and also has

higher compensation gains than the linearisedneu-

rocontroller(Fig.t1).The controllerstructureused

for the B'oo and the neurocontrol design is consis-

tent with the classicalapproach of flightcontrolde-

sign wherein an inner loop compensation (i ---*_)

is designed firstto provide stabilityaugmentation

and place the augmented plant dynamics within the

handling qualitiesspecifications;and then the outer

loop compensation (8 ---*fi)is designed to provide

decoupled command tracking to reduce pilotwork-

load. The significanceof the differencebetween the

Hoo based controllerand neurocontroller"innerloop"

compensation was studiedfurtherby consideringfail-

ures in the outer compensation loops,i.efailurein

the error sensors. Eigenvaiue analysisshowed that

the closed-loopsystem with Hoc based controllerwill

remain stablefor failuresin any or both of the error

sensor loopswhereas the closed-loopsystem with the

neurocontrollerlinearizedat t - 0.05 sec was unsta-

bleforfailureineitheror both ofthe errorloops.The

response of the closed-loopsystem for case 2 com-

mands and failureinthe eQ loop isshown in Fig.14

for both the H_¢ based controllerand the nonlinear

neurocontroller.The H_ based controllerstilltracks

the velocitycommand and providesstableresponse in

pitch ratewhereas the neurocontrollergivesa highly

unstable response. So the Hoo based controlleris

using the plant measurements (_) in a manner con-

sistentwith the cl_ical idea ofproviding innerloop

plant augmentation. How toformulate the neurocon-

troldesignproblem such that the resultingcontroller

exploitsthe plant measurement information to pro-

vide inner loop stabilityaugmentation isan area of

futureresearch.

Stabilitymargin analysiswas performed forthe lin-
earized neurocontrollermodels and the Hoo based

controllerto quantify robustness of the control de-

signs.Among the linearisedneurocontrollermodels,

stabilitymargins were worst for the one linearized

around t - 0.05 sec,so only those resultsare dis-

cussed here. Structured singularvalue analysis [17]

showed that the H= based controllerhas guaranteed

multivariablegain margins of-3.7to6.6 dB (gainfac-

tor of 0.(35to 2.1)and phase margins of--.30deg for

simultaneous loop gain or phase changes at the plant



output(V andQ)andmargins of-3.8 to 7.2 dB and

±32.5 deg atthe plantinput (WF and 6TV). For the

linearizedneurocontroller,these multivariablemar-

ginswere only -0.6to 0.6 dB and :i:3.4deg for loop

gain variationsat the plant output, and -0.9 to 1.1

dB and ±6.6 deg at the plant input.The low stabil-

itymargins with the neurocontrollerare indicativeof

poor robustnessin that the closedloop system might

be unstable for small uncertaintiesin the plant dy-

namics. Since the multivariablemargins can some-

times be conservative,the stabilityrobustnessof the

closed-loopsystem was furtherevaluated using the

more classicalapproach of Ubreaking" one loop at s

time, i.e.one loop open and other loopsclosed.This

one-loop-at-a-timeanalysisconfirmed the poor stabil-

ity margins of the neurocontroller.The closed-loop

response ofthe system with the Hoc based controller

and the nonlinearneurocontrollerfor an added delay

of ra = 0.05 sec in the two control channels (WF

and _TV') isshown in Fig.15. This value of r_ cor-

responds to a phase lossof 8 deg at a frequency of 3

rads/sec,which isthe frequency that correspondsto

the guaranteed multivariablephase margin of6.6deg

forthe linearizedneurocontroller,and itisquiterep-

resentativeofthe kinds oftime delaysto be expected

inpracticalimplementation ofcomplex Right control

designs. From Fig.15 we note that the Ho_ based

controlshows very littledegradation in trackingper-

formance in the presence of time delay,whereas the

neurocontrollerexhibitslimit cycle behavior in the

pitch controlledvariable. A factor that may con-

tributeto thislack of robustness isthe factthat the

neuro-command ridesthe thrust vectoringrate limit

during initialand finaltransients.In contrast,the

neuro-command iswellbelow the fuel£ow ratelimit,

which resultsin robust velocitytrackingin the pres-

ence oftime-delay.Improving phase robustnesschar-

acteristicsofneurocontrollersand investigatingtheir

gain robustnesscharacteristicsare areas thatwarrant

furtherstudy.

In the neurocontroldesign,the weightsofthe neu-

ral network (the in_.ernal_presen_s_Wn of the neu-

rocontroller)were chosen to minimize the objective

function (11) over an exhaustive set of pilotinput

commands to the nominal vehiclemodel by using

the backpropagation algorithm. No information on

modelling uncertaintiesand no constrainton "off'-

nominal" actuator dynamics were provided to the

neural network during training. Withou_ any con-

straintother than controleffortand rate limits,the

trainedneuralnetwork learnedto controlthe nominal

vehiclemodel as e_cientlyaspossible(and withinthe

resolutionofbackpropagation). Consequently,the ro-
bustness ofthe neurocontrolleras trainedinsection4

ismostly subject to the generalizationabilityof the

backpropagation algorithm (in the present context,

generalizing means providing 8table control for "off-

nominal" _ehicle model dynamics _ha_ were no_ _ed

d_ring _ining). Because backpropagation is known

in general to have a limited ability to generalize [18],
the robustness of the neurocontrolleras trained in

section4 could have been expected to be quite lim-

ited.

Within the neural architectureof Fig.4,one possi-

ble approach to enhance the robustness of the neu-

rocontrollermay be to include allmodelling uncer-

taintiesin the trainingdata set.Another possibility

might be tomodify the objectivefunction(11)used to
trainthe neurocontrollerto reflectsome of the char-

acterksticsofthe functional(8)which isminimised in

the H_ based controldesign.

7 Conclusions. The applicabilityof neu-

ral networks for flightcontrol design was analyzed

through the process of designing a model-following

neurocontrollerfor the example ofan integratedair-

frame/propulsion model of a modern fighteraircraft

for the pilotedlongitudinallanding task. For this

two control inputs - two control outputs example,

the controldesign problem was set up as the task of

followingthe trajectoriesgenerated from a model of

the desiredvehicleresponse dynamics to pilotcom-

mand inputs. The neurocontrollerwas trained by

simulatingthe non-lineardynamics of the actuators

includingpositionand rate limits.The choiceofthe

objectivefunction and itsminimization over entire

commanded trajectorieswere found to be criticalto

the neurocontroldesign.A satisfactorytrade-offbe-

tween tracking performance and controleffortcould

be achieved by an appropriateselectionofthe weights

of the objectivefunction.

The neurocontroller shows better performance

than a baselineH_ based controllerdesigned forthe

same command trackingproblem. HoweveL the neu-

rocontrollercommands largercontrolratesthan the

H= based controller,speciallyfor thrust vectoring

where the neuro-cornmand ridesthe thrustvectoring

ratelh'nitduring initialand finaltransients.The pos-

sibilityofimproving the practicalityof the proposed

neurocontrol design methodology, to prevent neuro-

commands from ridingactuator rate limitswithout

signii_cantdegradation of tracking performance, is

currently being investigatedin lightof the results

from the minimization of the H_ based controlde-

sign.

To gain further insightinto the neurocontroller

characteristics,linearizedsmall perturbation repre-

sentations of the ne_rocontrollerwere obtained at

differenttime points along a trajectorycorrespond-



ing to a demanding set of tracking commands. A lin-

ear analysis of these linearised neurocontroller models

and the H_ based controller showed some differences

in the controUer characteristics. The major difference
between the two controllers is that the H_ based

controller is a "fixed" dynamic controller whose dy-

namics are "automatically" determined through the

synthesis procedure such that the specified criterion is

met in the best possible manner, whereas the neuro-

controller is an input-output mapping which is highly
dependent on the magnitude and direction of the in-

puts and _uy desired dynamic characteristics have to

be built into the neurocontroller by appropriate selec-

tion of inputs. For instance, both the H_ based con-
troller and the neurocontroller have lead characteris-

tics (rate feedback) from the tracking error measure-

ments to the control commands; however, the lead

characteristic was a result of the synthesis procedure

for the H_ based controller which used only errors

inputs, whereas for the neurocontroLler this lead char-
acteristic could be obtained only by providing error

rate as explicit inputs (measurements). Developing

neurocontroi design methodologies that can synthe-

size the dynamics needed by the neurocontroller to

achieve the desired performance is an area of future

research. A possible approach may lie in the use of
recurrent neura_ architectures.

Linear stab_ty robustness analysis tools were ap-

plied to the iinearized neurocontroller models and to

the baseline H_ based controller. These analysis

tools showed that the neurocontroller will have very

poor stabiihy margins as compared to the H_ based

controller. The poor phase margins for the neuro-
controller were confirmed in simulation wherein time

delays of 0.05 see in both control channels resulted in

a limit cycle pitch response with the neurocontroller,

while there was little performance degradation with

the//_ based controller. Since the issue of robus_

heSS is criticsi to practical implernentation of flight

control systems, a future area of research is to de-

velop methodologies for the synthesis of"robust neu-

rocontrollers, and tools to analyze their robustness.
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